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I Background

. Graph Embedding tries to map graph vertices into a low-
dimensional vector space under the condition of preserving different
types of graph properties.

G=(V,E) G=(V) At
Low-dimensional Vector Space D NOde CIaSSIfI Catlon

] Link Prediction

] Network Visualization

generate

embed

[0 Community detection

O Easy to parallel D ______
O Can apply classical ML methods
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I Background

J Unsupervised vs. Supervised
= DeepWalk, LINE, node2vec, etc.

= GCN, GraphSAGE, etc.
. Euclidean vs. Non-Euclidean
= Hyperbolicspace (Tag2Vec, WWW’19)

J Vector vs. Distribution

= Using variance to model uncertainty of semantic
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I Outline

1 Conceptually, complex networks have hierarchical community in
real world.

= E.g. social networks, air transportation networks, and metabolic networks,

etc.
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I Outline

) Hierarchical Info can be observed to a certain extentin online networks.

Explicit hierarchy with attributes
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I Outline

J Goal:

" Encodingthe rich hierarchical structural information

1 Main Challenges:

= How to represent nodesor tags?

= How to learn the representations effectively and efficiently?
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== Microsoft

Galaxy Network Embedding:
A Hierarchical Community Structure Preserving
Approach

Lun Du, Zhicong Lu, Yun Wang, Guojie Songf, Yiming Wang, Wei Chen.
Galaxy Network Embedding: A Hierarchical Community Structure
Preserving Approach. In Proceedings of IJCAI, 2018.



How to Represent?

J Inspired by galaxy structure

J Embedding nodes and communities simultaneously

= Easyto analyzethenetworkat different scales.

(The representations of nodes in tree)
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B
I How to Learn? .

J Formulate the hierarchical community preserving network embedding

"= Oneisthelocal information,i.e. pairwise nodes similarity in the same

community.

* The other is the hierarchical structure property, i.e. horizontal relationship and
vertical relationship.

J Implement and optimize efficiently the embedding method.
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-
I Hierarchical Preserving Network Embedding ™

) Pairwise Proximity Preservation

. (1-1) [ l !
min 00 V=~ 3 Sllog P@/(c)) | a(c)
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-
I Hierarchical Preserving Network Embedding ™

) Hierarchical Structure Preservation

= Horizontal relationship:

1®(cy,) — ®(c)Il <[[®(cy,) — (eI, 3) z /’\
= Vertical relationship: A /\ m

|[@(ci™) — (I < [@(c5) — (e DIl @ 1
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I Galaxy Network Embedding

1 Objective

L -1) z z z
min Of ) == Y Sl log P@/(d)) | 0(c))
cé,céGC’h(cz_l

st. Veie Ch(ch), ||@(c) — @(ck )| =7t

| 3)
where,
1
ri=n-dl, <
di ' = min Dist(®(c}), ®(c})), (6)
ci,céECh(c;_l),i;éj
Dist(z,y) = ||z — ||, Figure 2: Structure of GNE
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I Proof u

Galaxy Network Embedding Hierarchical Preserving Network

Embedding
e e e e e e e e = —— 1 I_ —————————————————————————— |
I D . . . . .
min O == Y 8 log P@()| 8(ch) ! Pairwise Proximity Preservation
| chrej€Oh(e ) min Of V=~ 3 8L log P@'(c)) | 8(ch)
st. Ve Ch(c™), ||@(ch) —@(ck )2 =rit D ch,ch € Ch(cy )
(5) . . . .
where, = . Hierarchical Structure Preservation
rl=n.dt n< % = Horizontal relationship:
dit = min _ Dist (®(c}), ®(ch)), (6) [@(ct,) — @(c) | <[ (et,) — B(ch)ll; 3)

ct,cL€Ch(cy ) i]

Dist(z,y) = ||z — v, = Vertical relationship:

12(ci™) — @) < 12(ch) — @l DIl @

- . S S e S S e B B B e e e e e B e
o~

— e . . O S S S B D B e e B e e e e

- S S e e S e D e e e e e e e e

2019/10/11 Graph Representation Learning 15



Proof

The community representations learned from recursively optimizing the objective Eq.(5) with

the strategy Eq.(6) preserve the constraints Eq.(3) and Eq.(4).
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I Experiment

Dataset Baselines

O Facebook social network datasets: Spectral Clustering [Tang and Liu, 2011]

O Ambherst College DeepWalk [Perozzi et al, 2014]

0O Hamilton University Nodeavec [Grover and Leskovec, 2016]

O Georgetown University LINE [Tang et al., 2017]

O Hierarchical random graphs (HRG): GraRep [Cao etal., 2015]
raRep [Cao et al.,

O syn_with_125nodes
MNMF [Wang et al., 2017]

O O O O O O

O syn_with_1800nodes
O syn_with_2560nodes
O syn_with_3750nodes
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I Experiment

Hierarchical Community Detection

Syn_with_1800nodes Syn_with_2560nodes Syn_with_3750nodes
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Figure 3: The comparison of hierarchical community preservation
on different models. Three different structures of HRG with the
same number of layers are used.
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I Experiment

Network Visualization
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Figure 4: The visualization of vertex representations on different
models
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I Experiment

Vertex Classification

Model Ambherst Hamilton Georgetown
10% | 30% | 50% | 70% | 90% 10% | 30% | 50% | 70% | 90% 10% | 30% | 50% | 70% | 90%
GNE 93.57 | 93.31 | 93.33 | 93.18 | 92.89 | 94.83 | 94.53 | 94.11 | 94.17 | 93.86 || 53.22 | 53.80 | 53.55 | 52.20 | 51.88
SpectralClustering | 72.89 | 73.49 | 73.94 | 74.32 | 72.82 | 78.16 | 77.60 | 77.21 | 77.59 | 74.92 || 49.26 | 50.87 | 50.79 | 50.60 | 48.53
DeepWalk 90.62 | 91.65 | 91.32 | 91.13 | 90.41 || 92.89 | 92.33 | 92.52 | 92.18 | 91.55 || 54.07 | 53.79 | 53.35 | 51.69 | 50.92
Node2Vec 91.29 | 91.24 | 91.04 | 90.44 | 90.02 || 92.09 | 91.03 | 91.18 | 90.06 | 89.56 || 52.86 | 53.73 | 53.16 | 52.70 | 51.28
LINE 90.76 | 91.82 | 91.48 | 91.09 | 89.42 || 92.33 | 92.72 | 92.52 | 92.62 | 91.73 || 54.64 | 53.45 | 53.81 | 52.71 | 51.28
GraRep 92.13 | 92.25 | 91.78 | 91.56 | 91.48 | 93.67 | 93.04 | 92.30 | 92.40 | 91.00 || 54.80 | 53.24 | 53.95 | 51.87 | 51.74
MNMF 89.82 | 89.06 | 88.04 | 86.43 | 78.44 || 91.42 | 90.32 | 89.12 | 87.02 | 81.19 || 53.43 | 52.63 | 52.10 | 51.52 | 50.35
Table 1: The multi-label classification results on different percentages of test datasets
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== Microsoft

Hierarchical Community Structure Preserving
Network Embedding:
A Subspace Approach

Lun Du®, Qingqing Long™,Yiming Wang®, Guojie Songf ,YiLun jin, Wei Lin.
Hierarchical Community Structure Preserving Network Embedding: A Subspace
Approach. Accepted by CIKM, 2019.



Drawbacks of GNE

] Failed when embedding deeper
communities

051

= Radii shrink exponentially

= Data sparsity in a deeper community

Performance of Community Detection

()‘-B-SpaceNE
J Probably overvalued hierarchical e
information NN
- 1 2 3 4 5 6
= Vertices across community are exponentially Number of layers in the network

Figure 5: The comparison of hierarchical community preserva-
tion on different models. A 6-layer generated hierarchical net-
works is used.

distant than those within the same
community.
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I How to Represent?

1 Subspace
= Natural hierarchical structure

= Deeper community correspondingto lower dimensional subspace

.\. d-dimensional subspace
/ —

/.\ b (d-1)-dimensional subspace \ 7
\
o .~ . /o
@ . (d-2)-dimensional subspace
(a) Network (b) Hierarchical community structure (c¢) 3-d hierarchical subspace

Figure 1: The correspondence between the community hierarchy and the subspace hierarchy
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I How to Learn?

J Formulating the problem into an optimization problem with
subspace constraints

= Modelingcommunity affiliation by subspace

= Reducingthe representation dim by constrainingthe rank of base vectors
1 Designing efficient learning algorithm

* From global to layer-wise optimization

* From discrete to differentiable optimization
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I Hierarchical Structure Preserved

) Preservation of Structure within Individual Communities

L= ) loga(z® - i

(i,j)EE

Whereu() Sf ( )forl—l L,v,eV

) Preservation of Structure among Communities

L |c] ¢l

EONIDNCE

=0 i=1 j=i+1

o —(0
ID+k-E, _» [ogo(—|[z" — % |])]

J Low Rank Constraints .
L |C;

Ly = z z ’rank(Sil)

[=0 i=1
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I Experiment

Vertex Classification

Model Ambherst Georgetown ucC
30% 50% 70% 90% 30% 50% 70% 90% 30% 50% 70% 90%
SpaceNE 0252 | 93.11 93.74 | 95.09 56.12 | 56.42 | 56.92 56.54 88.69 | 89.02 89.23 | 90.07
GNE 93.17 93.33 | 9326 | 93.52 52,19 | 53.53 53.75 53.12 87.78 88.42 88.42 87.57
MNMF 87.11 88.04 | 89.23 89.96 51.52 51.69 | 51.60 | 53.25 87.89 87.95 88.09 88.10
DeepWalk 91.09 | 91.26 | 91.71 92.03 51.45 53.25 5376 | 54.03 88.35 88.42 88.51 88.63
LINE 91.11 91.53 91.89 | 91.67 51.35 51.93 52.18 52.38 87.71 87.88 87.95 87.53
Struc2Vec 7272 | 73.35 7392 | 77.23 46.85 | 47.44 | 4833 | 47.59 87.96 | 87.89 88.11 88.25
SpectralClustering | 72.88 | 73.51 73.89 | 74.41 49.67 50.02 50.79 | 51.23 84.23 84.35 84.31 84.21
Table 2: The multi-label classification results on different percentages of train datasets
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I Experiment

Link Prediction

Model Amherst  Georgetown  UC
SpaceNE 85.61 89.28 91.32
GNE 62.07 68.97 51.25
MNMF 48.89 49.76 50.05
DeepWalk 86.40 89.16 91.39
LINE 74.37 76.58 71.22
Struc2Vec 51.77 49 .94 46.83
SpectralClustering  37.76 40.63 38.68

Table 4: The link prediction results on different datasets.
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I Experiment

Network Visualization
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I Outline

u H|erarch|cal Info can be observed to a certain extentin online networks.
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== Microsoft

Tag2Gauss: Learning Tag Representations via
Gaussian Distribution in Tagged Networks

Lun Du”, Yun Wang®, Guojie Songf, Xiao Ma, Lichen Jin, Wei Lin, Fei
Sun. Tag2Gauss: Learning Tag Representationsvia Gaussian Distribution
in Tagged Networks. In Proceedings of IJCAIl, 2019.



I How to Represent?

1 Represent tags and nodes simultaneously

) Tags represent node communities with intricate overlapping
relationships

] Distribution: Tag; Sample from distributions: Node

30 30

25 1 25 4
20 O 20

15 15
10 1 @) @) 10 1 <::::::>
0.5 0.5

0.0 0.0 1

10 15 20 25 30 35 40 10 15 20 25 30 35 40
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I How to learn?

Tag View Embedding Module Node View Embedding Module
N
\ / [ ] (v Q O \
OO N, Z1) . Backward [ ] D(v») Q Q
Hybrid [ (O | T [ : 2
Ty v Walker . Prme::t N(,Ltz, 2) : O— Q O
v — = > ) [ | | @)
.- ( : Forward GCN § O
ag Kelation >equence - keT, ak V; ks 24k o a O T
@ Tag © Node Tag Distribution j i < : s | J
e N Multi-Task Learning ¥
Objectlve = [ Max-Margin Ranking Objective } + [ NCE Objective ]

________________________________________________________________________________________________________________________________

J Tag2Gauss Framework:

= Tag-view Embedding = Node-view Embedding = Multi-task Learning
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I Experiments

] Datasets:
" Leetcode (652 nodes, 1096 edges, 34 tags, 3 labels)
= Bilibili (11727 nodes, 187148 edges, 151 tags, 10 labels)
= Cora. (2707 nodes, 5429 edges, 1433 tags, 7 labels)
] Baselines
= DeepWalk (KDD’14)
= Node2vec (KDD’16)
* Hybrid Deepwalk (Naive Design)
" GraphSage (NIPS’17)

2019/10/11 Graph Representation Learning
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I Experiment

The Advantage of Distribution Representations

Brainteaser Bit Manipulation
Q . DP
Tree = Recursio

Two Pointers Binary Indexed Tree

@ Trie

Segment Tree
0 Linked List
Array " DFS
Backtracki inarySearch Topological Sort
Minimax q Divide and Conquer
Greedy Rejection Sampling

S tT
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I Experiment

Node Classification

Model Leetcode Bilibili Cora
10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Node2Vec 3637% 36.37% 38.68% 37.63% 39.68% 48.19% 48.19% 4536% 4536% 42.88% 57.12% 5740% 5740% 50.84%  48.84%
LINE 3441% 38.59% 35.89% 33.66% 4046%  6.55% 7.21% 7.65% 8.30% 9.28% 4900% 4996% 4623% 45.48% 39.13%
GraphSage 34.00% 37.37% 36.65% 39.77% 44.37% 61.48% 6081% 60.52% 59.02% 54.26% 5095% 51.63% 49.10% 45.70% 34.15%
Tag2Gauss 42.27% 42.68% 4370 % 44.04% 45.03% 61.65% 61.23% 60.83% 60.58% 56.85% 68.45% 67.21% 66.56% 64.87% 63.26%

Table 1: The comparison of node classification measured by Macro-F; on different models and different training size.
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== Microsoft

DANE: Domain Adaptive Network Embedding

Yizhou Zhang, Guojie Songj; , Lun Du, Shuwen Yang, Yilun Jin. DANE:
Domain Adaptive Network Embedding. In Proceedings of I/CAl, 2019.



I Motivation

) Domain adaptation

= Transferring machine learning models across different datasets to
handle the same task
) Domain adaptation on networks is significant:
= Reduce the cost of training downstream machine learning models by
enabling models to be reused on other networks
= Handle the scarcity of labeled data by transferring models trained well
on a labeled network to unlabeled networks

It is important to design a network embedding algorithm that can support
domain adaptation.
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I Challenges

) Embedding space alighment

= Structurally similar nodes should have similar representationsin
the embedding space, even if they are from different networks.

1 Distribution alignment

= Embedding vectors of different networks should have similar
distribution in embedding space.

= Most machine learning models perform as guaranteed only when
they work on data with similar distribution as their training data.



Technique Framework: Overall

Input Layer Output Layer
o~ )

Network A :):(f“ I / }i
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From Network A
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From Network B

I

Discriminator

Embeddings From B

(a) Shared Weight

(b) Adversarial Learning
Graph Convolutional Network

Regularization

Figure 1: An overview of DANE. DANE consists of two major components: (a) shared weight graph convolutional network (SWGCN)
projects the nodes from two networks into a shared embedding space and preserve cross-network similarity; (b) adversarial learning regular-

ization is a two-player game where the first player is a discriminator trained to distinguish which network a representation vector is from and
the second player is the SWGCN trying to generate embeddings that can confuse the discriminator.
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IAdversariaI Learning Regularization

J Discriminator to avoid the instability of adversarial learning:

Lp = Esev,, [(D(z) — 0)°]

ﬂxévtgt [(D(x) - 1)2]

J Adversarial training loss function to confuse the discriminator is:

Loav = Evev,, [(D(z) = 1)*] + Egev,, [(D(z) — 0)°]

JOverall loss function

L = Lgcn =+ )\Ladv

2019/10/11 Graph Representation Learnin
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I Experiment

Comparison with Baselines

Paper Citation Network

Co-author Network

Methods A—B B—A A—B B—A
Macro F1 | Accuracy | Macro FI | Accuracy | Macro F1 | Accuracy | Macro FI | Accuracy

DeepWalk 0.282 0.381 0.22 0.32 0.238 0.250 0.267 0.280
LINE 0.156 0.214 0.175 0.272 0.232 0.261 0.262 0.262
Node2vec 0.147 0.196 0.248 0.32 0.283 0.294 0.264 0.273
GraphSAGE Unsup 0.671 0.703 0.861 0.853 0.631 0.650 0.680 0.678
DANE 0.797 0.803 0.852 0.872 0.732 0.742 0.767 0.774
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I Experiment

Comparison with the Variant without adversarial learning

F1 Score F1 Score
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I Future Works

1 Understanding of graph neural networks
= Why does it work?

= What kind of graph is it more effective?
] Customized GNN for different kinds of graphs
1 Applications

= Semi-structured data mining

= Source code analytics

2019/10/11 Graph Representation Learning
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Welcome to collaboration or internship!

lun.du@microsoft.com
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