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Social Networks

• Social Networks are intrinsically in the form of graphs


• Nodes (individuals) and ties


• Edges or Links (relationships or interactions)

15

Background Graph Embedding Techniques Tasks Future Directions

社交⽹网络

社交⽹网络天然就是以graph(图)形式存在

节点：⼈人或者其他连接介质

边：节点关系或者交互



Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China

 Some Useful Tasks 

16

Node Classification

Community Detection

Recommendation
• To predict the role function 

of a node
• To analyze users' preference 

patterns to suggest potential 
targets 

Background Graph Embedding Techniques Tasks Future Directions

• To encode a partition of nodes 
into multiple communities 

Link Prediction       
• To predict future possible 

links in the network

相关应⽤用

推荐节点分类

关系预测 社区检测

• 分析节点的分类、功能等。

• 预测未来节点间关系的变化 • 将不不同节点划分到不不同社区
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Graph Learning Lifecycle

17

Graph  
Data

Node 
Features

Learning 
Algorithm Model

Feature Engineering Downstream Tasks

Background Graph Embedding Techniques Tasks Future Directions

• Traditional social network analysis (SNA) measures structural properties of networks 传统社交
⽹网络分析考量量图的结构属性


• Node: degree, PageRank score, betweenness, closeness, eigenvector, …


• 节点：度，pageRank分数，中介中⼼心性，接近中⼼心性，特诊向量量等


• Pairs: #common neighbors, ... 节点对：共同邻居节点等


• Groups: cluster assignments, cliques, cores, clans, ... 团结构：集群分配，团，核等等。

图学习流程

图数据 节点特征 学习算法 最终模型

下游应⽤用
特征⼯工程
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Graph Learning Lifecycle

• DO NOT need to compute the graph statistics as input node features：不不需要⽤用图节点特征
计算图的统计数据


• Learning node features via GRAPH EMBEDDING： 通过图嵌⼊入⽅方法学习节点属性

18

Graph  
Data

Node 
Features

Learning 
Algorithm Model

Feature Learning 
(implicit, distributed)

Feature Engineering Downstream Tasks

Background Graph Embedding Techniques Tasks Future Directions

图学习流程

图数据 节点特征 学习算法 最终模型

下游应⽤用
特征⼯工程

特征学习（隐形的，离散的）
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Feature Learning

• Map each node into a low-dimensional space by 
encoding graph-structured and node attributes

19

Background Graph Embedding Techniques Tasks Future Directions

ei = [xi
1, xi

2, . . . , xi
d]

f : vi → ℝd Node Vector / 
Node Embedding / 

Node Representation

特征学习

将图结构和节点属性映射到⼀一个低维空间

异常检测
属性预测

聚集
关系预测

点向量量
点嵌⼊入

点表示
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A Visual Example

• Zachary’s Karate Club network: 空⼿手道俱乐部⽹网络

20

[Perozzi et al. KDD 2014]

Background Graph Embedding Techniques Tasks Future Directions

Intuition: Embedding of nodes to lower-dimension, so that “similar” 
nodes in the graph have embeddings that are close together

直觉：将节点嵌⼊入到低维空间，所以语义相似的节点应在空间⾥里里距离相近

举例例

输出：图表示输⼊入：图
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Shallow Embedding Methods Deep Embedding Methods

Matrix Factorization Based Methods

Random Walk Based Methods

Graph Autoencoder

Graph Convolutional Network

• [Belkin et al. NIPS 2002]

• [Ahmed et al. WWW 2013]

• [Cao et al. KDD 2015]

• [Ou et al. KDD 2016]

• [Perozzi et al. KDD 2014]

• [Grover et al. KDD 2016]

• [Cao et al. AAAI 2016] 

• [Wang et al. KDD 2016]

• [Bruna et al., ICLR 2014] 

• [Duvenaud et al., NIPS 2015] 

• [Kipf & Welling, ICLR 2017]

• Our work [Zhang et al. UAI 2018]

• Our work [Zhang et al. IJCAI 2019]

Graph Embedding

Recurrent Graph Neural Network

Spatial Temporal Graph Neural Network
• [Li et al. ICLR 2018]

• [Yan et al. AAAI’2018]

• [Wu et al. IJCAI’2019]

• [Guo et al. AAAI 2019]

• [Li et al. ICLR 2015]

• [Dai et al. ICML 2016]

图嵌⼊入

浅度嵌⼊入⽅方法 深度嵌⼊入⽅方法

基于矩阵分解

基于随机漫步

递归图神经⽹网络

时空图神经⽹网络

图⾃自动编码

图卷积⽹网络
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Shallow Embedding Methods
Maps nodes to vector embeddings with an “embedding 
lookup” table:


1. Matrix Factorization-based Methods 

2. Random Walk-based Methods

22

f(vi, E) = ei

E ∈ ℝ|V|×d

ei ∈ ℝdvi ∈ ℝ|V|

Background Graph Embedding Techniques Tasks Future Directions

浅度嵌⼊入⽅方法

⽤用嵌⼊入查找表将节点映射到⽮矢量量嵌⼊入

基于矩阵分解⽅方法

基于随机漫步⽅方法
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Matrix Factorization-Based

• Dimensionality Reduction 降维 

• Encoder:


• Decoder: pairwise similarity


• Loss:


•    is a matrix of user-defined pairwise similarity measurement


• Laplacian Eigenmaps [Belkin et al. NIPS 2002]; Graph Factorization 
[Ahmed et al. WWW 2013]; GraRep [Cao et al. KDD 2015]; HOPE [Ou et al. KDD 2016]

23

f(vi) = viE

L ≈ | |EET − S | |2

S

≈

S E ET

d

|V |
d

|V | |V |

Background Graph Embedding Techniques Tasks Future Directions

基于矩阵分解⽅方法

编码器器

解码器器

损失

S是⽤用户定义的衡量量相似度的矩阵
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Random Walk-Based 
• Nodes co-occur on short random walks over the graph 
节点出现在短随机漫步的路路径上


—> Nodes would have similar embeddings 节点有相似的嵌⼊入

24

[Hamilton et al. IEEE 2018]

ei

ej

Background Graph Embedding Techniques Tasks Future Directions

基于随机漫步⽅方法
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Random Walk-Based (Cont.) 

• Deepwalk [Perozzi et al. KDD 2014] & Node2Vec [Grover et al. KDD 2016]


• Cross-entropy Loss: 交叉熵损失函数

25

Dec(ei, ej) ≜
exp(eT

i ej)
∑vk∈V exp(eT

i ek)

L = ∑
(vi,vj)∈D

− log(Dec(ei, ej))

Background Graph Embedding Techniques Tasks Future Directions

基于随机漫步⽅方法
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Drawbacks of Shallow 
Embedding Methods

1. No parameters sharing ⽆无参数共享 

• Simply an embedding lookup based on arbitrary node id 只是对
任意点嵌⼊入的查找


2. Fail to leverage node attributes ⽆无法充分利利⽤用节点属性 

• E.g., user profiles on a social network 社交⽹网络中⽤用户的资料料


3. Cannot generate embeddings for previously unseen 
nodes ⽆无法为新⽤用户⽣生成嵌⼊入 

• The Cold Start problem 冷启动问题

26

Background Graph Embedding Techniques Tasks Future Directions
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Deep Embedding Methods
• Use more complex encoders ⽤用更更复杂的编码器器


• Often based on deep neural networks 深度神经⽹网络 


• Depend more generally on the structure and attributes of the graph 更更多
依赖图的结构和属性


1. Recurrent Graph Neural Network 递归图神经⽹网络 

2. Spatial Temporal Graph Neural Network 时空图神经⽹网络 

3. Graph Autoencoder 图⾃自动编码 

4. Graph Convolutional Network (GCN) 图卷积⽹网络

27

Background Graph Embedding Techniques Tasks Future Directions

基于深度嵌⼊入⽅方法
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Recurrent Graph Neural  
Network

• Apply same set of parameters recurrently over nodes in a 
graph to extract high-level  node representation. Node’s 
hidden state is recurrently updated by     

  where  is a 

parametric function

h(t)
v = ∑

u∈N(v)

f(Xv, Xe
(v,u), h(t−1)

u ), f( . )

28

  Same Graph Recurrent Layer (GREC) in updating node representations

h (0)
v h (1)

v h (2)
v h (t−1)

v h (t)
v

递归图神经⽹网络

递归利利⽤用相同的参数在图上来训练获得点的向量量表示
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Spatial Temporal  
Graph Neural Network

• It considers spatial dependency and temporal dependency at 
the same time


     


        

29

Eg. Spatial-
temporal graph 
for traffic 
forecasting

[Yu et al. IJCAI,2018]

时空 
图神经⽹网络

同时考虑空间依赖性和时间依赖性

时空图以预测交通情况
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Spatial Temporal 
Graph Neural Network

1. STGNNs captures spatial and temporal dependencies of the graph 
simultaneously. STGNN 同时考虑了了时间空间的依赖关系 

2. The Task of STGNNs can be  

• Forecasting future node values or labels 预测节点值或者标签等


• Predicting spatial temporal graph labels 预测图的标签信息等等


3. STGNN follow two directions 

• RNN-based methods 基于循环神经⽹网络模型的⽅方法


• CNN-based methods 基于卷积神经⽹网络模型的⽅方法

30

Background Graph Embedding Techniques Tasks Future Directions时空 
图神经⽹网络
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Spatial Temporal 
Graph Neural Network

• RNN-based approaches capture spatial-temporal 
dependencies by filtering inputs and hidden state passed 
to recurrent units using graph convolutions. For a simple 
RNN take   


      After inserting graph convolution, above eq. becomes



      


H(t) = σ(WX(t)) + UH(t−1) + b),

H(t) = σ(Gconv(X(t), A; W) + Gconv(H(t−1), A; U) + b)

31

 where  are hidden feature vector of node, weight vector of 
time step, weight vector for hidden layer, node feature vector at time t and 
dimension of  , respectively.

H, W, U, Xt, b

H

通过过滤输⼊入和传递给递归单元的隐藏层信息， 
基于循环神经⽹网络的⽅方法综合考虑了了时间空间依赖性

时空 
图神经⽹网络
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• To compress information about a node’s local 
neighborhood 压缩点附近邻居的信息


•  


•

Graph Autoencoder

32

Dec(Enc(si)) = Dec(ei) ≈ si,

si ∈ ℝ|V|

L = ∑
vi∈V

| |Dec(ei) − si | |2

ei ∈ ℝd, d ≪ |V | si

ei

̂si
Enc() Dec()

|V | d

Background Graph Embedding Techniques Tasks Future Directions

图⾃自动编码
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Graph Autoencoder

• Deep Neural Graph Representations [Cao et al. AAAI 2016]: 


•         the pointwise mutual information of two nodes co-
occurring on random walks 


• Structural Deep Network Embeddings [Wang et al. KDD 2016]: 


•              the adjacency vector of 

33

si ≜ Ai

si ≜

vi

Background Graph Embedding Techniques Tasks Future Directions

深度神经⽹网络图表示

结构化深度⽹网络嵌⼊入

图⾃自动编码
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Graph Autoencoder

• Advantages:


• Incorporate structural information as a form of regularization


• Disadvantages:


• Difficult to deal with large scale graphs 很难处理理⼤大规模图


• The input dimension to the autoencoder is fixed at |V|  固定的输⼊入维度


• Cannot cope with unseen nodes ⽆无法处理理新节点


• The structure and size of the autoencoder is fixed 结构和尺⼨寸是固定的

34

Background Graph Embedding Techniques Tasks Future Directions

将结构信息纳⼊入正则化

图⾃自动编码
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• Spatial Approach:基于空间信息


• Aggregate information from                               


                                                      + Parameter Sharing


1. Define neighborhood


• All neighbors 


• Fixed size uniform sampling


• Random walk sampling


2. Design graph aggregator   

Graph Convolutional 
Network (GCN)

35

Local Neighborhood 

yi = rθ(xi, {zi})

Background Graph Embedding Techniques Tasks Future Directions

图卷积⽹网络

综合考虑局部邻居信息和参数共享

所有邻居

固定尺⼨寸统⼀一采样

随机漫步采样

设计图聚集器器
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Graph Aggregator Properties
Set --> Irregular Grid 

1. Permutation-invariant 

2. Dynamic Resize

36

Background Graph Embedding Techniques Tasks Future Directions

Patch --> Regular Grid


1. Permutation-sensitive


2. Fixed Size

Convolution Graph Convolution

center node

neighborhood

图聚集器器性质
规则⽹网络 不不规则⽹网络

排列列⽅方式：敏敏感 排列列⽅方式：恒定的

固定尺⼨寸 动态尺⼨寸
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Graph Aggregators

Pooling-based Pairwise-sum

37

Background Graph Embedding Techniques Tasks Future Directions

图聚集器器
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Graph Aggregators (Cont.)

38

Background Graph Embedding Techniques Tasks Future Directions

gate

[Zhang et al. UAI 2018]

Gated Attention Aggregator (GaAN)Attention-based Aggregator

图聚集器器

基于注意⼒力力机制的聚集器器 基于⻔门控注意⼒力力机制的聚集器器
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Graph Neural Networks for 
Recommendation

• Formalize the user-item 
interaction data as a bipartite 
graph 


• Rating prediction 

• Predict some missing ratings 
given the existing rating pairs


• Transductive rating prediction


• Cold start scenario

39

Background Graph Embedding Techniques Tasks Future Directions

图聚集器器

将⽤用户和物品的交互关系描述成⼆二部图

评分预测

基于已有的评分信息预测缺省的评分

转导评分预测

冷启动场景
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Transductive Rating 
Prediction

• Train on observed ratings


• Predict the missing ratings , 
i.e., `?`


• All the testing users and 
items are observed in 
training data


•  Matrix completion problem


•  Matrix Factorization (MF)

40

Background Graph Embedding Techniques Tasks Future Directions

转导评分预测

在可观测评分上训练

预测缺省评分

在训练数据集中所有测试⽤用户和物品均可以观测

矩阵补全问题

矩阵分解
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Cold Start Scenario 1:  
New Users/Items

• Train on observed ratings


• Predict how a new user 
will rate the movie


• Content-based 
recommendation


• Collaborative Deep Learning 
for Recommender Systems 
[Wang et al. KDD 2015]


• To encode the user features, 
e.g., profiles

41

Background Graph Embedding Techniques Tasks Future Directions

冷启动示例例1  
新⽤用户/物品 在可观测评分数据上训练

预测新⽤用户如何给电影评分

基于内容的推荐

基于协同深度学习的推荐

将⽤用户属性进⾏行行编码
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Cold Start Scenario 2:  
Ask-to-rate

• Train on the observed 
ratings


• Test time: 


• Ask a new user to rate 
several movies 


• Predict how a user will rate 
other movies


• Inductive rating prediction

42

Background Graph Embedding Techniques Tasks Future Directions

冷启动示例例2  
邀请评分

在可观测评分上训练

邀请新⽤用户对电影评分

预测⽤用户如何评价其他电影

归纳评分预测
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Stacked and Reconstructed 
Graph Convolutional Networks

• STAR-GCN:


• Can solve the cold start problem (inductive) in recommender 
systems


• Embed nodes to low-dimensional vectors -> Scalable to large graphs


• Multi-block structure: Mask and reconstruct node embeddings (BERT 
[Jacob et al. 2019] for Graph)


• SOTA results on both transductive and inductive (ask-
to-rate) rating prediction task 


• Achieves the best state-of-the-art results
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Background Graph Embedding Techniques Tasks Future Directions

[Zhang et al. ĲCAI 2019]

将节点嵌⼊入到低维向量量 可处理理⼤大规模图

堆叠重构图卷积⽹网络

多区块结构：隐藏和重构节点嵌⼊入

在转导和归纳评分预测问题上取得了了⽬目前最优结果
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STAR-GCN
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Background Graph Embedding Techniques Tasks Future Directions

多区块图编码解码

通过编码语义图结构和特征输⼊入⽣生成节点表示

恢复隐藏的输⼊入节点嵌⼊入

GCN的任何变体可以是⼀一个编码器器或者解码器器

评分预测损失函数

节点重构损失函数

堆叠重构图卷积⽹网络
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Experiment: Dataset
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Experiments: Transductive 
Rating Prediction

• STAR-GCN architecture achieves the best state-of-the-
art results on four out of five datasets
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Background Graph Embedding Techniques Tasks Future Directions

RMSE: the lower 
the score, the 

better the 
performance


Star-GCN在四个数据集上获得了了最佳结果
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Experiment: Inductive Rating 
Prediction (Ask-to-rate) 

• Goal: to predict ratings where either users or items are not seen in the training phase


• Experiment Setting:

• Keep 20% of user (or item) nodes as the testing nodes & remove them from the training graph


• STAR-GCN produces significantly better results than baselines 
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Background Graph Embedding Techniques Tasks Future Directions

RMSE: the lower 
the score, the 

better the 
performance 

⽬目的：预测在训练阶段⽤用户或者物品缺失的评分信息
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Medical Graph Embedding
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Background Graph Embedding Techniques Tasks Future Directions

Medical Knowledge Graph  
• including medicine, disease, symptoms, electronic medical 

records, etc...  

• Internal edges representing medical knowledges. 

• Help doctors to deliver the knowledge and decision support  

医学图嵌⼊入

医学知识图谱

药物，疾病，症状，电⼦子病历等等
节点之间的关系代表医学知识

帮助医⽣生传递医学知识和决策⽀支持
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Medical Graph Embedding
• Research Question : How to do graph embedding for medical 

knowledge graphs? 

• Observation:  A patient with disease "pneumonia" has symptom "fever". 

• Conventional model: "pneumonia" leads to "fever".


• Our thinking: "fever" is common but not always presented in disease 
"pneumonia"!


• P(symptom = fever | disease = pneumonia) 

• We are doing: probabilistic graph embedding for medical knowledge 
graphs
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观察：有肺炎的病⼈人有发烧的症状

传统⽅方法：肺炎导致发烧

我们认为：发烧并不不⼀一定由肺炎导致

我们⽤用概率图嵌⼊入来表达医学知识图谱

医学图嵌⼊入
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• Motivation: Clinical studies cannot sufficiently and 
accurately identify DDI's. 


• How about using AI to help predict DDI's?


• We are doing: using medical knowledge graphs to 
predict DDI's through link prediction.   
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Drug-Drug Interaction 
Prediction (DDI)药物反应预测

动机：临床试验⽆无法充分检测药物反应

如何⽤用AI帮助预测药物反应？

我们将药物反应问题转化为医学知识图谱的关系预测问题
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Large Graph issues 
• Ubiquity of large graph composed of millions of nodes and 

edges 

• In order to study it we require to store and compute the 
whole graph 

•  It raises space and computation issues even to compute 
basic properties of the graph 

Research Question : Given a large real graph, how can we 
derive a representative sample preserving properties of original 
graph?

Sampling Large Graphs
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Background Graph Embedding Techniques Tasks Future Directions

⼤大规模图问题

百万节点规模图很常⻅见

为了了学习⼤大规模图，我们需要存储和计算

即便便是计算图的基础属性空间和时间复杂度都被提⾼高了了

研究问题：如何在⼤大规模图上实现具有代表性的采样？
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Background Graph Embedding Techniques Tasks Future Directions

Challenges 

• Current algorithms are slow for large graph 

• No optimal solution for graph sampling 

•  Existing sampling approaches can only target one 
criteria / property to match with original graph 

• No baseline machine learning solution to graph 
sampling 

现有算法对⼤大规模图效率低

未有图采样的最优算法

现有采样算法只能针对⼀一个特征进⾏行行采样

未出现⽤用于图采样的机器器学习算法

Sampling Large Graphs
⼤大规模图问题
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Background Graph Embedding Techniques Tasks Future Directions

Proposed Solution :  

Graph sampling using deep reinforcement learning

G
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Large graph
Sub-graph

Reinforcement  
Learning

利利⽤用深度强化学习进⾏行行图采样

图卷积神经⽹网络 图节点嵌⼊入 ⼦子图
输⼊入：⼤大规模图

强化学习

Sampling Large Graphs
⼤大规模图问题
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• Graph embedding (Graph Convolution Network) is a powerful 
approach to obtain implicit and distributed representation of a 
graph with node (attributes) and link (relations) information!


• STAR-GCN achieves SOTA results in transductive and 
inductive rating prediction [Zhang et al. UAI 2018]


• Gated Attention Networks achieve SOTA results in inductive 
node classification [Zhang et al. IJCAI 2019]


• Future Directions


• Temporal and heterogenous graph neural networks


• Quantum random walk algorithm for neighborhood sampling

Summary & Future Directions
• Graph embedding (Graph Convolution Network) is a powerful 

approach to obtain implicit and distributed representation of a 
graph with node (attributes) and link (relations) information!


• STAR-GCN achieves SOTA results in transductive and 
inductive rating prediction [Zhang et al. UAI 2018]


• Gated Attention Networks achieve SOTA results in inductive 
node classification [Zhang et al. IJCAI 2019]


• Future Directions


• Temporal and heterogenous graph neural networks


• Quantum random walk algorithm for neighborhood sampling
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Background Graph Embedding Techniques Tasks Future Directions

GCN图嵌⼊入是⼀一个可获取节点、关系隐性和分布式表示的强⼤大的⽅方法

STAR-GCN 在转导和归纳评分预测任务上获得了了最佳结果

⻔门控注意⼒力力⽹网络在归纳节点分类问题是获得了了最佳结果

时间和异质图神经⽹网络

局部采样的量量⼦子随机漫步算法
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Source Code

• Code: https://github.com/jennyzhang0215/STAR-GCN


• [Zhang et al. UAI 2018] Zhang, Jiani, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin 
King, and Dit-Yan Yeung. “GAAN: Gated attention networks for learning on 
large and spatiotemporal graphs." UAI 2018.


• [Zhang et al. IJCAI 2019] Zhang, Jiani, Xingjian Shi, Shenglin Zhao, and Irwin 
King. "STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks 
for Recommender Systems." IJCAI 2019.
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https://github.com/jennyzhang0215/STAR-GCN


https://www2020.thewebconf.org 
April 20-24, 2020

https://www2020.thewebconf.org
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The Chinese University of Hong Kong 
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Thanks!


