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Background

¥ T
= Social Networks

1T RXME R AT E Agraph(B) N F1E

e Social Networks are intrinsically in the form of graphs

* Nodes (individuals) and ties Fie5: A ZEHMEIEN R
e Edges or Links (relationships or mteractlons

: 13“\\9&%'32%5615_
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B Some Useful Tasks

2\
TRDR s

Node Classification Recommendation

e To predict the role function e To analyze users' preference

of a node patterns to suggest potential

o DBEDE. Iw-%op

o g :' ',/', g ’ o
P 'Q_‘-;L;O’ﬁ.;l y -

..'v Lo

JE B
[3& Z 370 TR

Link Prediction Community Detection
e To predict future possible e To encode a partition of nodes
links in the network into multiple communities
o PR TREIXRNZNL o JEAREY mﬂ ﬂmnﬁ[
i "fgi‘,- )
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Background

. j L
?_Grapfh Learning Lifecycle

HEE TRFE FIRE RBEEREY

Node Learning

Features Algorithm

HE AT T §2 o —————————————————————
Feature Engineering Downstream Tasks T~z 3

e Traditional social network analysis (SNA) measures structural properties of networks EZi 4132

MZ o EEENESHEE

* Node: degree, PageRank score, betweenness, closeness, eigenvector, ...
e TR B, pageRankz &, RN FOYE, EEFOME, FZREF

e Pairs: #common neighbors, ... TR HEPETRE

'r

 Groups: cluster assignments, cliques, cores, clans, ... Bl4519: £ 5, H, %E%E,
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Background

. j L
?_Grapfh Learning Lifecycle

EE#E TRLE FIRE RRRE

Graph Node Learning
Data Features Algorithm

FIAETH=E
\

Feature Learning
(implicit, distributed)

e DO NOT need to compute the graph statistics as input node features: EZAET S4HIE
T EENS TR

Downstream Tasks iz FH

HEZF>) (BRACR, EalRY)

e Learning node features via GRAPH EMBEDDING: BEEAGEZEITEEMY
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Background

FHIEE ) |
Feature Learning
RBESHMT SRR R — TR

* Map each node into a low-dimensional space by
encoding graph-structured and node attributes

Latent Dimensions . R
e Anomaly DetectionFFE il

e Attribute Prediction B 1455
) >e Clustering  R&
e Link Prediction xZ 50

Adjacency Matrix

<

d << |V|

e = [x;, x5 ...,x ]
, d Node Vector/ RMHE=
. ; % . Rl
f Vi R Node Embedding / =&k
=X Node Representation

- o2
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A Visual Example

e Zachary’s Karate Club network: &= FB{EFREEMNEL
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(a) Input: Karate Graph

TP

18

| it BRm
(b) Output: Representation

[Perozzi et al. KDD 2014]

Intuition: Embedding of nodes to lower-dimension, so that “similar”
nodes in the graph have embeddings that are close together

T RERARRAHZT 8], PRBOE SRR T R EZ B R E &

— >
m H:
E- Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China b P

20

0%



Bl #zA

Graph Embedding
EZEBRARIE AREBRANRIE

Matrix Factorization Based Methods Recurrent Graph Neural Network

= AR - [Li et al. ICLR 2015] 3 = 2
5 ﬁE + /7] ﬁ# . %ﬁﬁmde;a;_l\lvl\fv?/vz\/ozoﬂ 3]  [Daietal. ICML 2016] 75-”3 = ?EFQIM%
e [Ouetal KDD 2016] Spatial Temporal Graph Neural Network

e [Cao et al. KDD 2015]
Li et al. ICLR 2018
Random Walk Based Methods veta ] :fqagémgg

[Yan et al. AAAI2018] ] 5S
= - Bjﬁ*"ﬁ%-}-l/:- [Perozzi et al. KDD 2014] . E}Jéﬁﬁg

[Wu et al. IJCAI'2019]
o [Grover et al. KDD 2016] Graph Autoencoder

IR

[Guo et al. AAAI 2019]

IR

[Cao et al. AAAI 2016]
e [Wang et al. KDD 2016]

BIRM L

IR

Graph Convolutional Network

[Bruna et al., ICLR 2014]

[Duvenaud et al., NIPS 2015]

[Kipf & Welling, ICLR 2017]

Our work [Zhang et al. UAI 2018] .
Our work [Zhang et al. IJCAI 2019] 19%)
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Shallow Embedding Methods
ZEBRANFE

Maps nodes to vector embeddings with an “embedding
lookup” table: f(v;, K) = €; Rz \ & F 8T RMETEIREE

SSE

A

0/|0|0|1|{0|0| e =“
v, e RV e; € R?

l

E € RIVIxd
1. Matrix Factorization-based Methods EFiEfED RS %

2. Random Walk-based Methods EFREH 2% 3%
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Matrix Factorization-Based
BT DR E

V d
 Dimensionality Reduction [#2 Ad V]
. d
T EE v N
. Encocfegr: J(v) =vE IV

ﬁgﬁg%& S E ET

* Decoder: pairwise similarity

c LBX L~ EET -S|

* S is a matrix of user-defined pairwise similarity measurement
SERFE X NE=H{UE RN
* |Laplacian Eigenmaps Belkin et al. NIPS 2002]; Graph Factorization
/Ahmed et al. Www 2013]; GraRep [Cao et al. kbD 2015]; HOPE [ou et al. KDD 2016]

1 - 25
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Random Walk-Based
HET K2 HiE

* Nodes co-occur on short random walks over the graph
T RO IERE ST RIER

—> Nodes would have similar embeddlng§ RAEMBLEYERA

Pt

;fk"(U —) G (v i|vs)

J Y

2. Optimize embeddings based on
co-occurrence statistics.

X pglvjlvi)

1. Run random walks to obtain co-occurrence statistics.
[Hamilton et al. IEEE 2018]

- E E /}
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Random Walk-Based (Cont.)
ET g% Ak

e DeepwalK [perozzi et al. kpD 2014] & Node2VecC [Grover et al. KDD 2016]

exp(e/e))

kaev exp(e’e,)

Dec(e;, e) =

e Cross-entropy Loss: 32 X (&5 bR £X

L = Z — log(Dec(e,, €)))

(v,v;)eD
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Drawbacks of Shallow
Embedding Methods

1. No parameters sharing TS =

e Simply an embedding lookup based on arbitrary node id R 233

EERBRANERK

2. Fail to leverage node attributes ToiEZ O FIAT EEMY

e E.g., user profiles on a social network f£3XMWZ&R AP ISR

3. Cannot generate embeddings for previously unseen

nodes JoiENFTRA P £ ERA
e The Cold Start problem ;22505

E! Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China ";&’
26 -



Deep Embedding Methods
BT FHA)\TTT/%

e Use more complex encoders FE ZeNREES

e Often based on deep neural networks 3 Z {843 W 45

e Depend more generally on the structure and attributes of the graph %

(B UISESEC AT R

1. Recurrent Graph Neural Network 153 E 042 N 2%

R

2. Spatial Temporal Graph Neural Network B %S [E|fR43 W 2%

3. Graph Autoencoder BB 48

4. Graph Convolutional Network (GCN) E&FR 4%
E- Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China ’%"
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Recurrent Graph Neural
EHERENSE Network

e Apply same set of parameters recurrently over nodes in a

graph to extract high-level node representation. Node’s
hidden state Is recurrently updated by

h) = Z fX, XE, Ly hi=D), where f(.)is a

ueN©)
parametric function ZJIFAEFRNSHREE LFINGKIRFRHE@ERT
1 ©) Hh D h?® =D hé’)
"' »  GREC " GREC "» ...V »  GREC -

Same Graph Recurrent Layer (GREC) in updating node representations

E- Graph Embedding — Recent Advances and Future Directions by Irwin King @ BESC2018, Nov. 12,2018, Taiwan ’33’
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NS _
*qggé 4% Spatlal Temporal

Graph Neural Network

e |t considers spatial dependency and temporal dependency at
the same time [B8T 2 8 == 8] (IR §Oi 1 1B [a) 4k a1k
CN
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(N RES

=z oPatial Temporal
Graph Neural Network

1. STGNNs captures spatial and temporal dependencies of the graph
simultaneously. STGNN [E]R%& & 7 B8 = [a) ik i< Z

2. The Task of STGNNs can be

ke s

e Forecasting future node values or labels FUIl T R {E S & T o =

e Predicting spatial temporal graph labels il E IR {E B 5E%E

3. STGNN follow two directions

e RNN-based methods EF 1ML NEZERIRY 5%

e CNN-based methods EFEFRHBEMZEEIN G L

E! Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China ";&’
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(NS

=z oPatial Temporal
Graph Neural Network

e RNN-based approaches capture spatial-temporal
dependencies by filtering inputs and hidden state passed

to recurrent units using graph convolutions. For a simple
RNN take H® = o(WXY) + UH""D + b),

After inserting graph convolution, above eq. becomes
) [ . —1 .
HY = 6(G,,, X", A; W)+ G, (H"™ A, U) + b)
BT EmAMEELER THREBERER,
ETEAMENBZNEEESER T RIEZ EMREHE

where H, W, U, X', b are hidden feature vector of node, weight vector of
time step, weight vector for hidden layer, node feature vector at time t and

dimension of H , respectively.

l E? Graph Embedding — Recent Advances and Future Directions by Irwin King @ BESC2018, Nov. 12,2018, Taiwan
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B Zh4R i
Eraph Autoencoder

e Jo compress information about a node’s |local

neighborhood 48 RMIIBERIER pa—

N /

Dec(Enc(s,)) = Dec(e) ~ s, AN /]
L= ) ||Dec(e)—s;||’ V| d B
v,.eV

. S, = RlVl y // ei \ «
L N
S S.

e e, €RLd<|V]

EnC() Dec()

E- Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China "E"’
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B Zh4R i
Eraph Autoencoder

REMEZMBERT
e Deep Neural Graph Representations [cao et al. ArAI 2016]:

°* s 2 the pointwise mutual information of two nodes co-
occurring on random walks

EMEREMEERAN
o Structural Deep Network Embeddings [wang et al. KDD 2016]:

e 5,2 A, the adjacency vector of V;

E- Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China "E""
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B Zh4R i
Eraph Autoencoder

 Advantages:

e |ncorporate structural information as a form of regularization
BEERMAIENML
 Disadvantages:

e Difficult to deal with graphs RN IEXFIRE

e The input dimension to the autoencoder is fixed at |V| EENMNEE

e Cannot cope with To RN IEFT T R

e The structure and size of the autoencoder is fixed TR~ Z2EELY

l E? Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China
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Graph Convolutional
E&iMNsE Network (GCN)

e Spatial Approach: EF=[g){§ &2

e Aggregate information from Local Neighborhood

z%%%%%gﬂg&gﬁ,%*u%%&a sg + Parameter Sharlng

1. Define neighborhood
e Allneighbors %, * < B SR/

@ ©
s

e Fixed size uniform sampling “¢°  BEERIH—5#

[ Fan P
- ‘\‘_.' a—y

* Random walk sampling © & BB % R A%

)
l-...'

2. Design graph aggregator Yi = 7o(X;; 12;}) ®iTEIRKS

l E? Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China
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Graph Aggregator Properties

EIRSaF LR

Patch --> Regular Grid #Nm%s Set --> Irregular Grid AHMMZE

1. Permutation-sensitive

1. Permutation-invariant

HEBI S : Bk HESIAI: [BER
2. Fixed Size 2. Dynamic Resize
ﬁ I-‘E-I.Rq— EjJIL,\Rq-
4 neighborhood
center node
Convolution Graph Convolution

l E? Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China
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Graph Embedding Techniques

FREK4 Graph Aggregators

Pooling-based

Vi = 0o(x; @ pool;ar (d0(25)))

l E:J Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China ,@
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e

(‘)U(X, -

Pairwise-sum

Z U"T" ( i))s

1 JEN;

) (x. 2, )
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Graph Aggregators (Cont.)

Atteljtion -based Aggregator Gated /§ttent10n Aggregator (GaAN)
E--,I %‘JJWL%UE’]E;EEE = I ECYE: %ﬁﬂ%ﬂﬂ’]ﬁ”éaﬁ
y; = FCy | || T HM)FC/'.;] ). | vga e
I.T: JEN - e l“C(} 4}&, A || c],-,‘.:' Z !l'f-."‘i)FC:;“.,(_Z.,'):l.).
”'lk.l _ “\l( Yew (X' Z)) JEN; '.
! Z,_] (‘l)'()u ( z)) gi = [(/f “. ....[/EA )] =1 '_,,(x,-.z',\:l .

o\ (x,z) = (FC, ) (X )FC 5 (2))-
[Zhang et al. UAI 2018]

- E E /}
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Graph Neural Networks for
mEzese Recommendation

e Formalize the user-item
Interaction data as a bipartite
graph
ISP YRR E XA R _EBE

 Rating prediction

o Fom o .
* Predict some missing ratings

given the existing rating pairs
ETERMNTSE 2RSS
* Transductive rating prediction
ST T

e Cold start scenario
\A w—

R B S
E? Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China
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Transductive Rating
#¥SFo5M Prediction

e [rain on observed ratings

@ 7RI ElSs
A B C D E e Predict the missing ratings,
1 5| - 2 3/|1 6., 7
TR S V5
@2 %3 -7 e All the testing users and
322 2 s - items are observed in
training data
Yo 2T msE R A R A A A T AT

e Matrix completion problem

e Matrix Factorization (MF) *EBo3 %

EElE e 157
E? Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China "j;"
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Cold Start Scenario 1:

- New Users/Items
V‘\F Ej]l_.l_\wlh e Train on observed ratings

F ﬁ Fﬁ F / WJ I:II:I@ ERTNF 5 £03E ElllZR
C

* Predict how a new user
will rate the movie

FoNER A P A el 4e B 821
Content-based gxpzspminss
a .l . lal recommendation

ETHRIREF IR
al 2 2 212 2 * Collaborative Deep Learning

for Recommender Systems
[Wang et al. KDD 2015]

[
U
N
w
—

N
N
w
[

e To encode the user features,
e.g., profiles

- BHF RYEHETRG 125
E- Graph Embedding for Social Network Analysis by Irwin King @ CCCN20I9 October 10-12,2019, Zhenjiang, China ’W
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Cold Start Scenario 2:
REmNTHI2  Ask-to-rate

L_IEJI:FJJ
e Train on the observed
@ ratings
A C D E ZERTVLIES Eilllsk
15| -12 3|1 e Test time:
~ 2| - 123 | e Ask a new user to rate
kol .4l several movies
BigFtRAP X B a2 s
ala2 12111213 e Predict how a user will rate
other movies

FoUT FE P a0 el i ELfth 22
* Inductive rating prediction
YhiTE4 TR
YAGF o T e
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Stacked and Reconstructed

Graph Convolutional Networks
iﬁ% E*’@ %*R IX_X-I gg [Zhang et al. ICAI 2019]

e STAR-GCN:
e (Can solve the cold start problem (inductive) in recommender

systems b = o
Y BHRRASIRLRE AIMEANIGE
e Embed nodes to low-dimensional vectors -> Scalable to large graphs

e Multi-block structure: Mask and reconstruct node embeddings (BERT
[Jacob et al. 2019] for Graph) ZXREEH: [AEMEMNT SERN

e SOTA results on both transductive and inductive (ask-
to-rate) rating prediction task

e Achieves the best state-of-the-art results
FERSMAWIFE o e e _EENE T HRIRMER
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STAR-GCN
=B E SRS

B 1D 4mhSiE X Bl S 4TI MmN £
£ £®

i t « Encoder (x(*=1 - h®)

+ Generate node representations by
encoding semantic graph
structures + input features

| « Decoder (h(V) - &)
»gg) * Recover masked input node

_ embeddings iix & BRI T3 SR A
% XIREl gt fED « Any variant of graph
« A multi-block graph encoder- convolutional network (GCN
decoder can be an encoder or decoder

x©@ S5 D 5 2@ L @ 5 8@ 5 L ¢@m  + LOSS V50 T 53 5% BRI 2X

. + A rating prediction loss £;
Go beyond BE_RT * A node reconstruction loss L,
* BERT has a single block

x©) - b 5 g T REMHK RN
GCNRERIZMRET AR — 1 dmhD 23 oL & 71523

IR

NRRT

A(L)
x( 4

pe
‘-
—
Y
=
—
>
v
¢
=
—~

/l - U;C:I“/}
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Experiment: Dataset

Table 1: Statistics of the datasets. ‘D’ and ‘Dy’ are the input
feature dimension of users and 1tems, respectively.

D | Dy | #U #V R #R
Flixster 3K | 3K 2,341 2,956 | 0.5,1...5| 26,173
Douban 3K | - 2,999 | 3000 | 1,..,5 136,891
ML-100K | 23 320 | 943 1,682 | 1,..,5 100K
ML-1IM 23 320 | 6,040 | 3,706 | 1...,5 1M
ML-10M - 321 | 69,878 10,677| 0.5,1,...5 | 10M
Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12,2019, Zhenjiang, China ’%?
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Experiments: Transductive

Rating Prediction

Fhixster Douban ML-100K ML-IM ML-10M
BiasMF [Koren et ai., 2009] : - 0.917 0.845 0.803
NNMF [Dziugaite and Roy, 2015] - - 0.907 0.843 - _
[-AUTOREC [Sedhain et al, 2015] | - - : 0.831 0782 o e lower
GRALS [Rao et al., 2015] 1.245 0.833 0.945 . - better the
CF-NADE [Zheng et al., 2016] - - - 0.829 0.771] performance
Factorized EAE [Hartford er al., 2018] | - - 0.910 0.860 -
sRMGCNN [Monti ez al.. 2017| 0.926 0.801 (0.929 - -
GC-MC |Berg er al.. 2017] 0.917 0.734 0.910 0.832 0.777
STAR GCN 0.879+0.0030 | 0.7274+0.0006 | 0.895+0.0009 | 0.83240.0016  0.770-+0.0001

e STAR-GCN architecture achieves the best state-of-the-
art results on four out of five datasets

Star-GCNEMI T EUBESR LIRG T RIELER
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Experiment: Inductive Rating
Prediction (Ask-to-rate)

BEY: FUNENIZM B AP S E Y miR R D E R

* Goal: to predict ratings where either users or items are not seen in the training phase

e Experiment Setting:

o Keep 20% of user (or item) nodes as the testing nodes & remove them from the training graph

Items 20% Users 20%

Datasets | Models S0% 30% 10% S0% 30% 10%
DropouiNel - : 0707 F0.002  0.79700.003  0.797+0.001
CDL : - ' 0.78140.006 078140001  0.78140.001
bouban | STAR-GCNCrec) 0.734£0.001  0.746=0001  0777=0002 | 073120000 0.738£0.000  0.753+0.001
M STAR GCNe e - o 073140002 073740000 075340001
STAR-GCN 0.725+0.001  0.734=0.001  0.764—0.000 | 0.725£0.001  0.731+0.001  0.747+0.001
STAR-GCN+ fea : : : 0.72540.002 _ 0.731+0.000 _0.746::0.000
DropouiNet 122340065 1.167=0031 1.142=0.024 | LOIS£0.002 1L.022+0.006  1.023+0.003
CDL LOS3E0009  1.082=0007 1.082=0007 | 1.011£0.005 1O13£0.006  1.015£0.004
M tonk | STAR-GONC rec) 093210001  0.945_0001 09760003 | 0.51910.002 0935310001  0.949.L0.001
‘ STAR-GONC rec. = fea | 0.92840.002  0.941=0.002__0.977=0.004 | 0.916£0.005 _0.93140.004 _ 0.9510.005
STAR-GCN 091910001 0.926-0.000 0.954—0001 | 0.907£0.004 09170005  0.937L0.005
STAR-GCN( few) 0.918-£0.002  0.926-0.002 09560000 | 0.907£0.002 09170001  0.9362:0.0041
DropoutNet 16910120 1134 000 125 0.128 | LO2 L0001 LO0S L0005 1.003 L0001
CDL LOGS L0009 1069 D009 1068 0009 | 057410000 0.975L0.000  0.97410.000
MLy | STAR-GONG e 0.86240.001  0.872=0.004 0903=0.004 | 0.85940.002 0.868+0.001  0.8910.001
MLAM G TAR-GONG reen = fea | 0.86140.002  0.867-0.002__ 0.910-0.006 | 0.859£0.001 _ 0.869£0.001 __0.89340.001
STAR-GCN 0.843L0000  0.850-0000 08760001 | 0.848L0.001 08580001  0.88210.000

STAR-GCN(+ fea)

0.844+-0.001

0.851=0.001

0.876-0.002

(.84940.001

0.858+0.000

» STAR-GCN produces significantly better results than baselines
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RMSE: the lower
the score, the

better the
performance
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Future Directions

EFERA |
Medical Graph Embedding

Medical Knowledge Graph E¥iREi

* including medicine, disease, symptoms, electronic medical
records, etc... @1, &M, R, BFRHFS ‘
R ZBINXRRER

e [Internal edges representing medical knowledges.

I.I.

Rl
xX*
) —
o

>0

E

e Help doctors to deliver the knowledge and decision support
ﬁﬁﬂg# EEEEFANRARER

i

S ©o °° D o 0 Q
S @ o
S. P
Y 57
£ % S0 @ B |
; %o

l E:J Graph Embedding for Social Network Analysis by Irwin King @ CCCN2019, October 10-12, 2019, Zhenjiang, China
48



EFERA |
Medical Graph Embedding

e Research Question : How to do graph embedding for medical
knowledge graphs?

e Observation: A patient with disease "pneumonia" has symptom "fever".
ME: FiFRIAEAR KGR

e Conventional model: "pneumonia" leads to "fever".
B5RE MASFBRE

e Qur thinking: "fever" is common but not always presented in disease
"pneumonia”!
BATAR: RRAASA—EHMRSE

® P(symptom = fever | disease = pneumonia)

e We are doing: probabilistic graph embedding for medical knowledge
graphs s misREiR A\ KRk E S ARE
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Drug-Drug Interaction
Zy¥ R FA Prediction (DDI)

e Motivation: Clinical studies cannot sufficiently and
accurately identify DDI's.
sl I&PRINISTE AT o il 259 Iz oL

e How about using Al to help predict DDI's?
2 a] FAIFE BT 2547 F [ ?

* We are doing: using medical knowledge graphs to
predict DDI's through link prediction.

B 115 25Y) R bz ) @A% 1€ 7 E R AR ENE R R A Fiilll o) &R

. 7
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Sampling Large Graphs
A FIAE [E] [0 3

Large Graph issues

e Ubiquity of large graph composed of millions of nodes and
edges BATRAMEEREN

e |n order to study it we require to store and compute the
whole graph ATZIKHMERE, BAIFEFHENTE

e |t raises space and computation issues even to compute

basic properties of the graph
BE 2T R EEME = B FI6T e S 2 E# IR S

Research Question : Given a large real graph, how can we
derive a representative sample preserving properties of original

graph?  poosiaen: SnEEANIEE FSSMES A SR
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Sampling Large Graphs
AR E 0] 7

Challenges

A BB ARE BRI
 Current algorithms are slow for large graph

* No optimal solution for graph sampling KREEXREFNRMEE

 Existing sampling approaches can only target one

criteria / r%)erty to match with original graph
A REEEREEH X —TMHEH1TRE

* No baseline machine learning solution to graph
sampling
REMATERFNNNZEZFEIEE
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Sampling Large Graphs
A FIAE [E] o] 35

Proposed Solution :

FIRRE RS HITEIRE
Graph sampling using deep reinforcement learning

EE)\ tw‘ih g T 2=
arge grap B AEOMARE 0 BT AR =
Z CED Sub-graph
o)
g 0]
s e

Reinforcement
Learning

a: e
o .
@)
Z
f BT ‘
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Future Directions

Summary & Future Directions

* Graph embedding (Graph Convolution Network) is a powerful
approach to obtain implicit and distributed representation of a
graph with node (attributes) and link (relations) information!

GCNERAZR—THIZIRTR. XARREM 7 HARREBRKRNGE

e STAR-GCN achieves SOTA results in transductive and

inductive rating prediction [Zhang et al. UAI 2018]
STAR-GCN EHESHYIAMITED MES LIXT T RIEER

* Gated Attention Networks achieve SOTA results in inductive

node classification [Zhang et al. [JCAI 2019]
[ HEEBEIMBERANT R0 RABEIXTF L &ESR
e Future Directions B &) F1 - o [ fR 222 P 4%

* Temporal and heterogenous graph neural networks

E“Bmﬁﬂ’]g?ﬂ)ﬁﬂ&*ﬁ%,ﬁ

 Quantum random walk algorithm for neighborhood sampling
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Source Code

e Code: https://github.com/jennyzhang0215/STAR-GCN

e [Zhang et al. UAI 2018] Zhang, Jiani, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin
King, and Dit-Yan Yeung. “GAAN: Gated attention networks for learning on
large and spatiotemporal graphs.” UAI 2018.

e [Zhang et al. IJCAI 2019] Zhang, Jiani, Xingjian Shi, Shenglin Zhao, and Irwin
King. "STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks

for Recommender Systems." [JCAI 2019. |
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https://github.com/jennyzhang0215/STAR-GCN

|
— | https:// www2020.thewebconf.or
— THE April 20-24
— WE B TAIPE! April 20-24, 2020
weew CONFERENCE 12020

ABOUTY  AUTHORSY  ATTENDEESY PROGRAMSY  SPONSORS‘V

WELCOME TO TAIPEI

DISCOVER MORE



https://www2020.thewebconf.org




Thanks!
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