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Introduction

Introduction
Background

Many problems in real life can be converted to combinatorial optimization
problems (COPs) on graphs, that is to find a best node state configuration or
a network structure such that the designed objective function is optimized
under some constraints.

Usually these problems are notorious for their hardness to solve because most
of them are NP-hard or NP-complete.
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Introduction

Introduction
Examples of COPs

Sherrington-Kirkpatrick (SK) model: a celebrated spin glasses model defined on a complete
graph. The objective function (ground state energy) is defined as:

E(s1, s2, · · · , sN) = −
∑

1≤i<j≤N

Jij si sj (1)

where si ∈ {−1, +1} and Jij ∼ N (0, 1/N) is the coupling strength between two vertices.
The number of all possible configurations is 2N and minimizing the object function is an
NP-hard problem.
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Introduction

Introduction
Examples of COPs

MIS problem: Finding the largest subset V ′ ⊆ V such that no two vertices in V ′ are
connected by an edge in E.The Ising-like objective function consists of two parts:

E(s1, s2, · · · , sN) = −
∑

i

si + α
∑
ij∈E

si sj , (2)

MIS problem is also an NP-hard problem.
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Introduction

Introduction
Examples of COPs

Modularity: Modularity is a graph clustering index for detecting community structure in
complex networks. In general cases where a graph is partitioned into K communities, the
objective is to maximize the following modularity:

E(s1, s2, · · · , sN) =
1

2M

∑
ij

[
Aij −

ki kj

2M

]
δ(si , sj ), (3)

It is suggested that maximizing modularity is strongly NP-complete.
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Introduction

Introduction
Traditional methods

Simulated annealing (SA)
Genetic algorithm (GA)
Extremal optimization (EO)
...

Remark
However, these methods suffer from:

slow convergence
limited to system size up to thousand
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Introduction

Introduction
Recent efforts

Recent efforts focus on machine/deep learning methods, which is based on
automatic differentiation techniques.
Usually these methods belong to supervised learning, containing two stages of
problem solving: first training the solver and then testing.
For example, Li et al.1 used graph convolution networks (GCNs) to train a
heuristic solver for some NP-hard problems on graphs.

Remark
Although relatively good solutions can be obtained efficiently, it takes a long time
for training the solver and the quality of solutions depends heavily on the quality
and the amount of the data for training, which is hardly for large graphs.

1Li, Z., Chen, Q., Koltun, V., 2018. Combinatorial optimization with graph convolutional networks and guided tree search, in: Advances in Neural
Information Processing Systems. pp. 539548.
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Introduction

Introduction
Our approach

The difficulty of solving COPs using deep/machine learning without traning
Sampling operation introduces stochasticity and is non-differentiable. Thus we
cannot use automatic differentiation techniques.

We adopt a reparameterization trick developed in machine learning community
called Gumbel-softmax, which provides another approach for differentiable
sampling.
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Introduction

Methodology
Mean field approximation

We assume that vertices in the network are independent and the joint probability
of a configuration (s1, s2, · · · , sN) can be written as a product distribution:

pθ(s1, s2, · · · , sN) =
N∏

i=1
pθi (si). (4)

The probability pθi (si) is a Bernoulli or multinoulli distribution parameterized by
parameters θi .
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Methodology

Methodology
Gumbel-softmax

Gumbel-softmax, a.k.a. concrete distribution, provides an alternative approach to
tackle the difficulty of non-differentiability. For a Bernoulli distribution, instead of
sampling a hard one-hot vector[0, 1] or [1, 0], Gumbel-softmax gives a continuous
proxy like [0.01, 0.99].

�pθ(s) �s Objective 
function

�pθ(s) �log pθ(s)

�g

+ �s Objective 
function

(a)

(b)
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Methodology

Methodology
Gumbel-softmax Optimization (GSO)

Gumbel-softmax Optimization (GSO) Algorithms
1 Initialization for N vertices: θθθ = (θ1, θ2, · · · , θN)
2 Sample from p(si) simultaneously via Gumbel-softmax technique and then

calculate the objective function E (s1, s2, · · · , sN)
3 Backpropagation to compute gradients ∂E (s;θθθ)/∂θθθ and update parameters

θθθ = (θ1, θ2, · · · , θN) by gradient descent

Batch version
We can simultaneously initialize Nbs different initial values and calculate Nbs
objective functions. When the training procedure is finished, we select result with
best performance from Nbs candidates.
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Experiment Experimental settings

Experiment
Experimental settings

For SK model, we optimize the ground state energy with various sizes
ranging from 256 to 8192.
For MIS problem, we use citation network datasets: Cora, Citeseer and
PubMed and treat them as undirected networks.
For modularity optimization, we use four real-world datasets: Zachary, Jazz,
C.elegans and E-mail.
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Experiment Experimental settings

Experiment
Experimental settings

We compare our proposed method to other classical optimization methods and
state-of-the-art deep learning approaches:

Simulated annealing (SA): a general optimization method inspired by
Metropolis-Hastings algorithm;
Extremal optimization (EO): a heuristic designed to address combinatorial
optimization problems;
Structure2Vec Deep Q-learning (S2V-DQN)1: a reinforcement learning
method to address optimization problems over graphs;
GCNs2: a supervised learning method based on graph convolutional networks
(GCNs).

1Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L., 2017. Learning combinatorial optimization algorithms over graphs, in: Advances in Neural
Information Processing Systems. pp. 63486358.

2Li, Z., Chen, Q., Koltun, V., 2018. Combinatorial optimization with graph convolutional networks and guided tree search, in: Advances in Neural
Information Processing Systems. pp. 539548.
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Experiment Performance

Experiment
Results: SK model

Table: Results: SK model

N I EO1 SA GSO (Nbs = 1)

E0 time E0 time (s) E0 time (s)

256 5000 -0.74585(2) ∼ 268s -0.7278(2) 1.28 -0.7270(2) 0.75
512 2500 -0.75235(3) ∼ 1.2h -0.7327(2) 3.20 -0.7403(2) 1.62
1024 1250 0.7563(2) ∼ 20h -0.7352(2) 15.27 -0.7480(2) 3.54
2048 400 - - -0.7367(2) 63.27 -0.7524(1) 5.63
4096 200 - - -0.73713(6) 1591.93 -0.7548(2) 8.38
8192 100 - - - - -0.7566(4) 26.54

1Boettcher, S., 2005. Extremal optimization for Sherrington-Kirkpatrick spin glasses. The European Physical Journal B-Condensed Matter and
Complex Systems 46, 501505.
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Experiment Performance

Experiment
Results: SK model

Table: Results: SK model

N I GD (Adam) GD (L-BFGS) GSO (Nbs = 1) GSO (Nbs = 128)

E0 time (s) E0 time (s) E0 time (s) E0 time (s)

256 5000 -0.6433(3) 2.84 -0.535(2) 2.29 -0.7270(2) 0.75 -0.7369(1) 0.69
512 2500 -0.6456(3) 2.87 -0.520(3) 2.56 -0.7403(2) 1.62 -0.7461(2) 1.61
1024 1250 -0.6466(4) 3.22 -0.501(5) 2.73 -0.7480(2) 3.54 -0.7522(1) 4.09
2048 400 -0.6493(2) 3.53 -0.495(8) 3.06 -0.7524(1) 5.63 -0.75563(5) 12.19
4096 200 -0.6496(5) 4.62 -0.49(1) 3.55 -0.7548(2) 8.38 -0.75692(2) 39.64
8192 100 -0.6508(4) 16.26 -0.46(2) 4.82 -0.7566(4) 26.54 -0.75769(2) 204.26
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Experiment Performance

Experiment
Results: SK model
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Figure: (a): The time for simulated annealing (SA), gradient descent (GD) with Adam optimizer and our
proposed method (Nbs = 128) on optimization of ground state energy of SK model. (b) A log-log plot of time
versus system size N and the slope is 1.46, which indicates that the algorithmic cost is less than O(N2).
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Experiment Performance

Experiment
Results: MIS problem

Table: Results on MIS problems.

Graph size S2V-DQN1 GCNs2 GD (L-BFGS) Greedy GSO

Cora 2708 1381 1451 1446 1451 1451
Citeseer 3327 1705 1867 1529 1818 1802
PubMed 19717 15709 15912 15902 15912 15861

Remark

Our method obtained much better results compared to the sophisticated S2V-DQN.
Although our results are not competitive with GCNs, we must stressed that it is a supervised learning
algorithm. Besides, it also adopts graph reduction techniques and a parallelized local search algorithm.
Our method, however, requires none of these tricks.

1Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L., 2017. Learning combinatorial optimization algorithms over graphs, in: Advances in Neural
Information Processing Systems. pp. 63486358.

2Li, Z., Chen, Q., Koltun, V., 2018. Combinatorial optimization with graph convolutional networks and guided tree search, in: Advances in Neural
Information Processing Systems. pp. 539548.
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Experiment Performance

Experiment
Results: Modularity

Table: Results on modularity optimization.

Graph size Newman 1 EO2 GSO

Q No. comms Q No. comms Q No. comms

Zachary 34 0.3810 2 0.4188 4 0.4198 4
Jazz 198 0.4379 4 0.4452 5 0.4451 4

C. elegans 453 0.4001 10 0.4342 12 0.4304 8
E-mail 1133 0.4796 13 0.5738 15 0.5275 8

Remark

The difficulty of optimizing modularity is that sampling from categorical distributions becomes harder with the
increase of number of communities.

1Newman, M.E., 2006. Modularity and community structure in networks. Proceedings of the national academy of sciences 103, 85778582.
2Duch, J., Arenas, A., 2005. Community detection in complex networks using extremal optimization. Physical review E 72, 027104.
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Conclusion

Conclusion

In this work, we have presented a novel optimization method,
Gumbel-softmax optimization (CSO), for solving combinatorial optimization
problems on graph.
Our experiment results show that our method has good performance on all
four tasks and also take advantages in time complexity.
However, there is much space to improve our algorithm on accuracy. We also
note that our methods can find other applications, e.g., structure
optimization.
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